翻訳と辞書
Words near each other
・ Solid Ivory
・ Solid Klein bottle
・ Solid line reporting
・ Solid lipid nanoparticle
・ Solid mechanics
・ Solid modeling
・ Solid Modeling Solutions
・ Solid Muldoon
・ Solid n Mind
・ SOLID Nepal
・ Solid North
・ Solid of revolution
・ Solid oxide electrolyser cell
・ Solid oxide fuel cell
・ Solid oxygen
Solid partition
・ Solid Patels
・ Solid PDF Creator
・ Solid PDF Tools
・ Solid perfume
・ Solid phase extraction
・ Solid Pleasure
・ Solid pseudopapillary tumour
・ Solid Rock
・ Solid Rock (The Rolling Stones album)
・ Solid Rock (The Temptations album)
・ Solid Rock Foundation
・ Solid Rock Lutherans
・ Solid Rock Outdoor Ministries
・ Solid Rock Radio


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Solid partition : ウィキペディア英語版
Solid partition
In mathematics, solid partitions are natural generalizations of partitions and plane partitions defined by Percy Alexander MacMahon.〔P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.〕 A solid partition of n is a three-dimensional array, n_, of non-negative integers (the indices i,\ j,\ k\geq 1) such that
: \sum_ n_=n
and
:
n_ \leq n_\quad,\quad
n_ \leq n_\quad\text\quad
n_ \leq n_\quad,\quad \forall\ i,\ j \text k\ .

Let p_3(n) denote the number of solid partitions of n. As the definition of solid partitions involves three-dimensional arrays of numbers, they are also called three-dimensional partitions in notation where plane partitions are two-dimensional partitions and partitions are one-dimensional partitions. Solid partitions and their higher-dimensional generalizations are discussed in the book by Andrews.〔G. E. Andrews, ''The theory of partitions'', Cambridge University Press, 1998.〕
== Ferrers diagrams for solid partitions ==

Another representation for solid partitions is in the form of Ferrers diagrams. The Ferrers diagram of a solid partition of n is a collection of n points or ''nodes'', \lambda=(\mathbf_1,\mathbf_2,\ldots,\mathbf_n), with \mathbf_i\in \mathbb_^4 satisfying the condition:〔A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for'' ''m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097–1100.〕
:Condition FD: If the node \mathbf=(a_1,a_2,a_3, a_4)\in \lambda, then so do all the nodes \mathbf=(y_1,y_2,y_3,y_4) with 0\leq y_i\leq a_i for all i=1,2,3,4.
For instance, the Ferrers diagram
:
\left( \begin 0\\ 0\\ 0 \\ 0 \end
\begin 0\\ 0\\ 1 \\ 0 \end
\begin 0\\ 1\\ 0 \\ 0 \end
\begin1 \\ 0 \\ 0 \\ 0 \end
\begin 1 \\ 1\\ 0 \\ 0 \end
\right) \ ,

where each column is a node, represents a solid partition of 5. There is a natural action of the permutation group S_4 on a Ferrers diagram – this corresponds to permuting the four coordinates of all nodes. This generalises the operation denoted by conjugation on usual partitions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Solid partition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.